LIKE US
SEARCH
    Shop By Vehicle Icon SHOP BY VEHICLE


    Shop By Tire Size Icon SHOP BY TIRE SIZE


    FREE SHIPPING
    ON ALL WHEELS AND TIRES

    FINANCING AVAILABLE

    After completing some shipping details, click on the "Proceed To Checkout" Button to be taken to the PayPal Checkout Page. There, you will be able to select Bill Me Later and take up to 6 months to pay.

    You may receive one of the following promotions when you make a qualifying purchase:

    • No Payments + No Interest if paid in full in 6 or 9 months
    • No Interest if paid in full in 6, 12, or 18 months (with required minimum monthly payments)
    • Interest will be charged to your account from the date of purchase at your current Annual Percentage Rate (APR) of 19.99% if the purchase balance is not paid in full within 6, 12, or 18 months
    • Offers may vary depending on where you shop and how much you spend

    You have the choice to pay your balance in full by the payment due date on your statement and avoid paying interest, or make minimum monthly payments until your balance is paid in full and pay interest from the date of purchase.

    LATEST NEWS/ARTICLES
    Time To Fulfill the XXR Backorders
    Atlanta, GA, July 25, 2013 - It seems that everywhere you call, you’ll hear the exact same message, “XXR wheels are on a nationwide backorder.” First Choice Wheels and Tires took the initiative to try and beat the system by ordering over a thousand wheels a year in advance. “Of course there was no way to order every single size and finish, so we wanted to stick with the most popular items. With a selection of 20,000 part numbers, you can see how this might get overwhelming” stated Dino Cajic, CEO of First Choice Wheels and Tires. He explained that “XXR is a brand that people want. If we can provide it sooner than the other guy you’ll come out on top. Our sales and marketing staff have spent hundreds of hours on XXR alone trying to predict which items will be popular a year from now. A year...

    Read More
    Other Latest Blogs

    • Time To Fulfill The Xxr B...
    • Wheel And Tire Financing ...
    • Method Race Wheels At Fir...
    • Mickey Thompson Classic I...
    • Buy Now On Mickey Thompso...
    • First Choice Wheels And T...
    • First Choice Wheels And T...
    • Pirelli Expands Premium P...
    • Terra Grappler Review...
    • Americas Good Design Awar...
    MOST RECENT WHEEL ADDED
    MOST RECENT TIRE ADDED

    TIRE BALANCE

    Tire balance, also referred to as tire unbalance or imbalance, describes the distribution of mass within an automobile tire or the wheel to which it is attached. When the tire rotates, asymmetries of mass may cause the wheel to hop or wobble, which can cause ride disturbances, usually vertical and lateral vibrations. It can also result in a wobbling of the steering wheel or of the entire vehicle. The ride disturbance, due to unbalance, usually increases with speed. Vehicle suspensions can become excited by tire unbalance forces when the speed of the wheel reaches a point that its rotating frequency equals the suspension’s resonant frequency. Tires are inspected in factories and repair shops by two methods: static balancers and dynamic balancers. Tires with high unbalance forces are downgraded or rejected. When tires are fitted to wheels at the point of sale, they are measured again, and correction weights are applied to counteract the combined effect of the tire and wheel unbalance. After sale, tires may be rebalanced if driver perceives excessive vibration.

    Static balance
    Static balance can be measured by a static balancing machine where the tire is placed in its vertical axis on a non-rotating spindle tool. The spot on the tire with the greatest mass is acted upon by gravity to deflect the tooling downward. The amount of deflection indicates the magnitude of the unbalance. The angle of the deflection indicates the angular location of the unbalance. In tire manufacturing factories static balancers operate by use of sensors mounted to the spindle assembly. In tire retail shops static balancers are most usually non-rotating bubble balancers, where the magnitude and angle of the unbalance is observed by looking at the center bubble in an oil-filled glass sighting gauge. While some very small shops which lack specialized machines still do this process, they have been largely replaced in larger shops with machines.

    Dynamic balance
    Dynamic balance describes the forces generated by asymmetric mass distribution when the tire is rotated, usually at a high speed. In the tire factory the tire is mounted on a balancing machine test wheel, the assembly is accelerated up to a speed of 300 RPM or higher, and sensors measure the forces of unbalance as the tire rotates. These forces are resolved into static and couple values for the inner and outer planes of the wheel, and compared to the unbalance tolerance (the maximum allowable manufacturing limits). If the tire is not checked, it has the potential to wobble and perform poorly. In tire retail shops tire/wheel assemblies are checked on a spin-balancer, which determines the amount and angle of unbalance. Balance weights are then fitted to the outer and inner flanges of the wheel. Dynamic balance is better (it is more comprehensive) than static balance alone, because both couple and static forces are measured and corrected.

    The dynamic balance can only be conducted if the driver comes to garage and has the garage check for imbalances. With the existing sensors found in many cars, however, the imbalance can be estimated in real time, as seen in a recent SAE paper: sensors such as the ABS wheel speed sensors were used to detect an imbalanced tire or tires in real time.

    The physics of dynamic balance
    Mathematically, the moment of inertia of the wheel is a tensor. That is, to a first approximation (neglecting deformations due to its elasticity) the wheel and axle assembly are a rigid rotor to which the engine and brakes apply a torque vector aligned with the axle. If that torque vector is not aligned with the principal axis of the moment of inertia, the resultant angular acceleration will be in a different direction from the applied torque. Whenever a rotor is forced to rotate about an axis that is not a principal axis, an external torque is needed. This is not a torque about the rotation axis (as in a driving or braking torque), but is a torque perpendicular to that direction. If the rotor is suspended by bearings, this torque is created by reaction forces in the bearings (acting perpendicular to the shaft). These reaction forces turn with the shaft as the rotor turns, at every point producing exactly the torque needed to keep the wheel rotating about the non-principal axis. These reaction forces can excite the structure to which they are attached. In the case of a car, the suspension elements can vibrate giving an uncomfortable feel to the car occupants. In practical terms, the wheel will wobble. Automotive technicians reduce the wobble to an acceptable level when balancing the wheel by adding small weights to the inner and outer wheel rims. Balancing is not to be confused with wheel alignment.

    Road Force Balancing
    Road Force Balancing takes the tire & wheel assembly and optimizes wheel run out and weight loaded tire deflection. After the road force value is minimized the wheel & tire assembly is balanced. Road force balancing has been in use at the original equipment level for many years but has only appeared in the replacement market since approximately the late 1990's.

    Vehicle Vibration
    Vibration in autos and light trucks occurs for many reasons. Common reasons are poor wheel balance, imperfect tire or wheel shape, brake pulsation, and worn or loose driveline, suspension, or steering components. Occasionally and rarely, one will find foreign material stuck in tire's tread causing vibration. (Road tar in summer).